

Satoshi Miyazaki

2013/11/18 BNL CCD Meeting

HSC/NAOJ

Hype Suprime-Cam

~ 10 G pixel
Digital Camera
for Subaru
Prime Focus

1.5 degree FOV

3 m high ~ 3 tons

HSC Hyper Suprime-Cam Project

Academic Institutes

Industrial Partner

NAOJ

Hamamatsu

U-Tokyo(IPMU · Phys)

Canon

KEK

Mitsubishi Electric.

ASIAA

Princeton Univ.

Key Elements

- Sharp Lens: < 0''.2 FWHM

- Large Number of CCDs

: to pave ø 50 cm focal plane

Satoshi Miyazaki

HSC Optics

- 1 Aspheric mirror
- 7 element corrector
 - cf LSST
 - 3 Aspheric mirror
 - 4 element corrector

of surface:

LSST	11
HSC	15

HSC:

Atmospheric

Dispersion

Corrector implemented

LSST Optics

- 3 Aspheric mirror
- 4 element corrector

LSST Optics Design

D80: 80 % Encircled Energy

Zaki Diameter

CCDs

NAOJ-HPK Collaboration

1994 - 1996 Back Illuminated small CCD

1996 - 1998 2k4k Front illuminated CCD

1999 - 2008 BI 2k4k Fully Depleted CCD

1998

2008

Detector

Collaboration with Hamamatsu

- 2k4k 15μm
- Fully depleted CCD
- High resistivity Si
- 200 μ m thick

HPK Fully Depleted CCD

CCD Structure Full Frame Transfer
Si Thickness $200~\mu m$ (Can be $100 \sim 300~\mu m$)
Vertical clock phase 3~phasesHorizontal clock phase 2~phases or 4~phasesOutput Amprilfiers 4~one~stage~MOSFET on chip and one J-FET on the package

Package Material Aluminum Nitride

Package Structure

10um flatness achieved

HSC/NAOJ

Full well

Optical Quantum Efficiency

CCD Performance

Items		Requirement (-100°C)	Measured
Packaging	Format (pixel size)	$2048 \times 4096 \ (15 \ \mu m \square)$	_
	Pixel to Package edge	< 0.5 mm	0.410 ± 0.025
	(Serial register side)	< 5.0 mm	4.975 ± 0.025
	Global height variation	$<25~\mu\mathrm{m}$ Peak-to-Valley	
QE	400 nm	> 45	42
	550 nm	> 85	87
	650 nm	> 90	94
	770 nm	> 85	91
	920 nm	> 80	78
	1000 nm	> 40	40
CTE (per pix)	Parallel direction	> 0.999995 (1600 e)	0.999999
	Serial direction	> 0.999995 (1600 e)	0.999998
Dark Current		< a few e/hour/pix	1.4
Charge diffusion		$\sigma_D < 7.5 \ \mu \text{m} \ (400 < \lambda < 1050 \ \text{nm})$	7.5
Full well	1 % departure	> 150,000 e	180,000
Amp. Responsivity		$> 4 \ \mu V/e$	4.5
Readout noise	150 kHz readout	< 5 e	4.5

CCD Installation 2011/11

Flatness of the Focal Plane

Satoshi Miyazaki

Red contour: Delivered PSF under 0.4 arcsec seeing

HSC/NAOJ

HSC Focal Plane

Assembly of the Dewar

In-Dewar Electronics Assembly

Nakaya et al. 8453-101

CCD Read Out

AC-couple
Single Noninverting Amp

Integration Type CDS

~ 150 kpix/sec = 15 sec readout

HSC

Camera Unit Assembly

HSC Camera docking with POPT2

2012/06

HSC/NAOJ

2nd Observing run 2013/1

Filter Exchanger Ready and Installed

HSC Performance Test using Stars

HSC Best Seeing Record

Nov. 2 2013 22:49 object059 EL=70 Texp = 30 <FWHM> ~ 0''.42 Y-band

Nov. 2 2013 23:25 object081 EL=62 Texp = 300 (no guide) <FWHM> ~ 0''.43 Y-band

Performance Check Using Stars

- No degradation of the image quality observed when we lower the elevation down to 25 deg
 - Misalignment due to flexure minimum as designed
- System throughput evaluated using SDSS stars and consistent with the expectation within 5 %

Image of M31

CCD read out and save onto the disk in ~ 25 sec

HSC M31 Image

Bias Subtraction Flat Fielding

Warp CCD images to map onto the sky

Image of M31

5 dithered exposures (2.8 min each av.) to filled the gaps of CCDs

Satoshi Inguana 15C/NAOJ

Observing Proposal

- 300 nights
- 166 Collaborators
- 2012/10 Submitted

Wide-field imaging with Hyper Suprime-Cam: Cosmology and Galaxy Evolution

A Strategic Survey Proposal for the Subaru Telescope

PI: Satoshi Miyazaki (NAOJ) Co-PI: Ikuru Iwata (NAOJ)

The HSC collaboration team¹: S. Abe⁽¹⁾, H. Aihara^{\star (2),(3)}, M. Akiyama⁽⁴⁾, K. Aoki⁽⁵⁾, N. Arimoto^{\star (5)}, N. A. Bahcall⁽⁶⁾, S. J. Bickerton⁽³⁾, J. Bosch⁽⁶⁾, K. Bundy^{\dagger (3)}, C. W. Chen⁽⁷⁾, M. Chiba^{\dagger (4)}, T. Chiba⁽⁸⁾, N. E. Chisari⁽⁶⁾, J. Coupon⁽⁷⁾, M. Doi⁽²⁾, M. Enoki⁽⁹⁾ S. Foucaud⁽¹⁰⁾, M. Fukugita⁽³⁾, H. Furusawa^{†(5)}, T. Futamase⁽⁴⁾, R. Goto⁽²⁾, T. Goto⁽¹¹⁾, J. E. Greene⁽⁶⁾, J. E. Gunn^{†(6)}, T. Hamana^{†(5)}, T. Hashimoto⁽²⁾, M. Hayashi⁽⁵⁾, Y. Higuchi^{(2),(5)}, C. Hikage⁽¹²⁾, J. C. Hill⁽⁶⁾, P. T. P. Ho^{*(7)}, B. C. Hsieh⁽⁷⁾, K. Y. Huang^{†(7)}, H. Ikeda⁽¹³⁾, M. Imanishi⁽⁵⁾, N. Inada⁽¹⁴⁾, A. K. Inoue⁽¹⁵⁾, W.-H. Ip⁽¹⁾, T. Ito⁽⁵⁾, K. Iwasawa⁽¹⁶⁾, M. Iye⁽⁵⁾, H. Y. Jian⁽¹⁷⁾, Y. Kakazu⁽¹⁸⁾, H. Karoji⁽³⁾, N. Kashikawa⁽⁵⁾, N. Katayama⁽³⁾, T. Kawaguchi⁽¹⁹⁾, S. Kawanomoto⁽⁵⁾, I. Kayo⁽²⁰⁾, T. Kitayama⁽²⁰⁾, G. R. Knapp⁽⁶⁾, T. Kodama⁽⁵⁾, K. Kohno⁽²⁾, M. Koike⁽⁵⁾, E. Kokubo⁽⁵⁾, M. Kokubo⁽²⁾, Y. Komiyama⁽⁵⁾, A. Konno⁽²⁾, Y. Koyama⁽⁵⁾, C. N. Lackner⁽³⁾, D. Lang⁽⁶⁾, A. Leauthaud^{†(3)}, M. J. Lehner⁽⁷⁾, K.-V. Lin⁽⁷⁾, T. Lin^{†(7)}, C. P. Loomis⁽⁶⁾, R. H. Lupton^{†(6)}, P. S. Lykawka⁽²¹⁾, K. Maeda⁽³⁾, R. Mandelbaum^{†(22)}, Y.

2013/05 Accepted 300 nights guaranteed from 2014/02 2016: Mid term review

uoka^{(13),(23)}, Y. Matsuoka⁽¹²⁾, S. Mineo⁽²⁾, T. Minezaki⁽²⁾, H. Miyatake⁽⁶⁾, R. Momose⁽²⁾, A. More⁽³⁾, S. (3), T. Morokuma^{†(2)}, H. Murayama^{*(3)}, K. Nagamine⁽²⁴⁾, T. Nagao^{†(23)}, S. Nagataki⁽²³⁾, Y. Naito⁽²⁾, K. ta⁽⁵⁾, H. Nakaya⁽⁵⁾, T. Namikawa⁽²⁾, C.-C. Ngeow⁽¹⁾, T. Nishimichi⁽³⁾, H. Nishioka⁽⁷⁾, A. J. Nishizawa^{†(3)}, guri^{†(3)}, A. Oka⁽²⁾, N. Okabe⁽⁷⁾, S. Okamoto⁽²⁵⁾, S. Okamura⁽²⁶⁾, J. Okumura⁽²³⁾, S. Okumura⁽²⁷⁾, Y. M. Onodera⁽²⁸⁾, K. Ota⁽²³⁾, M. Ouchi^{†(2)}, S. Oyabu⁽¹²⁾, P. A. Price⁽⁶⁾, R. Quimby⁽³⁾, C. E. Rusu^{(2),(5)}, S. Y. Saitou⁽³⁰⁾, M. Sato⁽¹²⁾, T. Shibuya⁽⁵⁾, K. Shimasaku^{†(2)}, A. Shimono⁽³⁾, S. Shinogi⁽²⁾, M. Shirasaki⁽²⁾ N. Spergel $^{\star(6),(3)}$, M. A. Strauss $^{\dagger(6)}$, H. Sugai $^{(3)}$, N. Sugiyama $^{(12),(3)}$, D. Suto $^{(2)}$, Y. Suto $^{\star(2)}$, K. Tadaki $^{(2)}$ kahashi⁽³¹⁾, S. Takahashi⁽⁵⁾, T. Takata⁽⁵⁾, T. T. Takeuchi⁽¹²⁾, N. Tamura⁽³⁾, M. Tanaka⁽⁵⁾, M. Tanaka^{†(3)} iguchi⁽¹³⁾, A. Taruya⁽²⁾, T. Terai⁽⁵⁾, Y. Terashima⁽¹³⁾, N. Tominaga⁽³²⁾, J. Toshikawa⁽³⁰⁾, T. Totani⁽²³⁾ $\text{ner}^{\star(6)}$, Y. Ueda⁽²³⁾, K. Umetsu⁽⁷⁾, Y. Urata^{†(1)}, Y. Utsumi⁽⁵⁾, B. Vulcani⁽³⁾, K. Wada⁽³³⁾, S.-Y. Wang⁽⁷⁾ amada⁽⁴⁾, Y. Yamada⁽⁵⁾, K. Yamamoto⁽³⁴⁾, H. Yamanoi⁽⁵⁾, C.-H. Yan⁽⁷⁾, N. Yasuda^{†(3)}, A. Yonehara⁽³⁵⁾, shida⁽²⁾, M. Yoshikawa⁽³⁶⁾, S. Yuma⁽²⁾ (1) NCU, Taiwan (2) Tokyo (3) Kavli IPMU (4) Tohoku (5) NAOJ AA (8) Nihon (9) Tokyo Keizai (10) NTNU, Taiwan (11) DARK, Copenhagen (12) Nagoya (13) Ehime ka Sangyo (16) Barcelona (17) NTU, Taiwan (18) Chicago (19) Tsukuba (20) Toho (21) Kinki (22) CMU

(23) Kyoto (24) Las Vegas (25) KIAA, China (26) Hosei (27) JSGA (28) ETH (29) Berkeley (30) GUAS (31) Hirosaki (32)

Konan (33) Kagoshima (34) Hiroshima (35) Kyoto Sangvo (36) JAXA

HSC SSP Survey: Three layers

Three-tier survey

- Wide: I400 sq. degs,
 i~26
- Deep: 28 sq. degs, i~27
- Ultradeep: 3 sq. degs, i~27.7

Fat PSF?

- Can be a show-stopper?
 - Shape measurement error?
 - Crucial Error PSF photometry ?

Old setup of the measurement

Measurement setup

10 micron pin hole is projected with X 1/10 (NA ~ 0.25) optics

Measurement is consistent with expected value.

fat psf

Satoshi Miyazaki

HSC/NAOJ

New Setup by NAOJ Astrometry Group

- Developed by Y.Kobayashi
- 1/20 pixel step X-Y stage to measure the pixel response function

Pixel Response Function (charge diffusion/mobility) estimated by comparing the simulation

Pulse Generator

HPK CCD Photon Transfer

Photon Transfer Curve: SDOID 1_46

Tree Ring?

\$~0.2 %

HSC/NAUJ

Other Issues to be settled

(1) Global slope seen on the Dome Flat

Light Leak?

This dome flat cannot be used for calibration.

Other Issues to be settled

(2) Stray Light

These are apparently not aperture ghost but stray light.

Summary

- HSC camera development completed
- Data management software being matured
- In the middle of the commissioning
- 300 nights proposal accepted
- Survey from 2014/02 over 5 years (planned)
- First Public Data Release 2016/02 (planned)
- +++ More careful CCD Characterization and establish the way of the calibration

